【技术】电线电缆绝缘及护套材料选用中几个误区的技术分析

对电线电缆绝缘及护套材料几个认识误区的技术分析及对策

我国电线电缆企业数量众多,产品同质化严重,要想提升质量的同时有效的控制成本、合法的获得竞争优势,有效的依据标准要求控制材料成本、降低废品率是有效的手段。本文拟从对电线电缆产品质量形成有直接影响的绝缘、护套材料控制方面,选取GB/T5023-2008《额定电压450/750V及以下聚氯乙烯绝缘电缆》(下文简称GB/T5023)、GB/T9330-2008《塑料绝缘控制电缆》(下文简称GB/T9330)、GB/T12706-2008《额定电压1kV(Um=1.2kV)到35kV(Um=40.5kV)挤包绝缘电力电缆及附件》(下文简称GB/T12706)、GB/T14049-2008《额定电压10 kV 架空绝缘电缆基本信息》(下文简称GB/T14049)等电缆产品国家标准(标准族)的要求,对比GB/T8815-2008《电线电缆用软聚氯乙烯塑料》(下文简称GB/T8815)、GB/T32129-2015《电线电缆用无卤低烟阻燃电缆料》(下文简称GB/T32129)等电缆材料国家标准及GB/T18380-2008《电缆和光缆在火焰条件下的燃烧试验》(下文简称GB/T18380)、GB/T2951-2008《电缆和光缆绝缘和护套材料通用试验方法》(下文简称GB/T2951)等标准族的要求,结合常见质量问题,对行业在绝缘及护套材料几个认识误区进行了分析探讨。

误区一、绝缘及护套材料无足轻重

传统上,由于电线电缆产品中绝缘和护套材料占其材料总成本的比例通常不超过20%,因此很多电缆企业将其视为非重要材料,质量极易被忽视,导致在供应商选择、材料型号选择及进货检验方面存在较大的随意性。同时,“西安奥凯问题电缆”事件的爆发引起了社会对电线电缆产品“导体打折”问题的充分重视,在产品质量方面,各界越来越多的将目光聚焦到电缆导体质量上。加之目前在对电缆企业有刚性约束的《强制性产品认证实施细则  电线电缆产品》CQC-C0101-2014、2018年12月1日生效的《电线电缆产品生产许可证实施细则》中,对工厂材料检验的要求仅限于制定检验/验证规定、保存检验/验证记录,使企业无需对材料检验做出实质技术性规定即可通过审查,很多企业因此在一定程度上觉得绝缘、护套材料质量不太重要。

实际上,绝缘和护套材料的质量决定了电缆的电气绝缘性能、机械物理性能、耐环境条件性能,直接影响电缆耐燃烧性能,在电缆产品标准中,70%左右的考核项目是由绝缘和护套材料质量决定或与其有关。对部分典型产品的与绝缘护套材料质量直接相关的项目数相对试验总项目数占比进行了统计,数据见表1:

表1

标准

典型产品

与绝缘护套材料质量直接相关的项目数

型式试验试验项目总数

占比(%)

GB/T5023.3

60227IEC01(BV)

15

23

65.2

GB/T5023.4

60227IEC10(BVV)

34

44

77.3

GB/T12706.1

YJV 0.6/1

29

39

74.4

GB/T12706.3

YJV 26/35

40

60

66.7

GB/T9330.3

WDZA—KYJY

28

39

71.8

GB/T14049

JKLYJ

19

28

67.9

由于绝缘及护套材料原因导致的不合格数占比也为约70%,数据见表2:

表2

不合格项目性质

出现频次  

不合格总数

占比(%)

与绝缘护套材料质量无关的项目(导体直流电阻、结构尺寸、曲挠、标志等)

25

83

30.1

与绝缘护套材料质量直接相关的项目

58

69.9

从上面分析我们不难发现,虽然绝缘及护套材料占电缆材料总成本不到20% ,但它们直接影响了约70%的电缆成品质量特性,导致了约70%的质量不合格,并且目前我们电缆企业所用的原材料质量堪忧,属于货真价实的“关键少数”,在电线电缆质量提升中,高度重视绝缘及护套材料的质量,充分做好这方面的质量控制能够用较少的投入获得较大的收益进而增强企业竞争力,同时《强制性产品认证实施细则  电线电缆产品》、《电线电缆产品生产许可证实施细则》本质上是通过产品一致性、产品标准的符合性等要求对材料质量进行了规定,必须引起充分重视。

误区二、采用符合绝缘及护套标准要求的材料就能满足生产合格电缆产品的需要

对于电线电缆绝缘及护套生产中常用的聚氯乙烯(以下简称PVC)、交联聚乙烯(以下简称XLPE)及无卤低烟聚烯烃材料,均有各自的国家及行业标准,当前电线电缆企业普遍认为这些材料标准均为权威组织发布,采购符合材料标准要求的绝缘及护套料就能满足电缆产品标准的要求,因此在采购合同中基本以这些材料标准作为质量验收依据。

电线电缆绝缘和护套的生产中PVC应用得最广泛。就PVC绝缘而言,GB/T5023规定的所使用的材料型号分别为PVC/C(导体最高工作温度70℃)、PVC/D(导体最高工作温度70℃柔软型)、PVC/E型(导体最高工作温度90℃),GB/T9330分别为PVC/A(导体长期允许的工作温度70℃)、PVC/D(导体长期允许的工作温度70℃柔软型),GB/T12706规定的型号分别为PVC/A(导体长期允许的工作温度70℃,≤1.8/3kV级)、PVC/B(导体长期允许的工作温度70℃,3.6/6kV级),而电缆企业采购PVC电缆料的习惯引用的验收标准为GB/T8815,其中将PVC绝缘材料分类为J-70(导体最高工作温度70℃)、JR-70(导体最高工作温度70℃柔软型)、J-90(导体最高工作温度90℃)、JGD-70(导体最高工作温度70℃,3.6/6kV及以下)。需要注意的是,虽然GB/T8815标准也给出了对应工作温度等,对于电缆产品材料选用上有一定的参考性,但是GB/T8815标准和电缆产品标准在实际材料型号、试验项目、指标要求、试验方法上都有着一定的差异,并且目前未见有公认的技术文件确定这些差异间的数据关联或替换关系。下面在表3中举例说明PVC材料需注意的部分差异:

表3

指标(项目)

电缆产品标准要求

材料标准对应要求

主要差异

是否有公认技术文件确定差异间的数据关联或替换关系

PVC的低温性能

GB/T5023中规定为低温卷绕或低温拉伸(根据外径尺寸二选一)、低温冲击

GB/T8815中规定为冲击脆化

GB/T5023是考核低温下抗形变及抗刚性冲击的能力,GB/T8815考核低温下抗剪切冲击能力,试验原理不同

PVC的热冲击性能

GB/T5023中规定为高温压力,测试刀口产生的压痕深度

GB/T8815中规定为热变形,考核圆形压棒产生的厚度变化率

试验原理相同,试验设备、所采集的数据形式不同

护套热稳定(选取GB/T12706中对ST2型护套料与GB/T8815中对应的HI-90料进行对比)

GB/T12706规定按照GB/T2951.32的规定,将条状试样放入长110mm,外径5mm,内径(4.0±0.5)mm的试管,用PH值1-10的普通试纸插入试管口,加热至200℃,开口测试试纸变红的时间

GB/T8815中规定将颗粒状试样放入长95mm,内径12mm-13mm的试管,刚果红试纸环放试管口,加热至200℃,封口测试试纸变蓝的时间

试验原理相同,但试样形状、试管尺寸、试纸类型、试纸放置方式、试验终止条件均不同

绝缘吸水试验(选取GB/T12706中对PVC/A型料与GB/T8815中对应的J-70、JJD-70料进行对比)

按照GB/T2951.13的规定,通过绝缘线芯在工作温度下的水中耐受相应直流电压的能力(导体对水),考核材料的吸水率

未作要求

材料标准未作要求

燃烧

按照GB/T18380标准族进行单根垂直燃烧或成束燃烧试验测量火焰蔓延距离,结果应符合标准要求

按照GB/T2406-19931试验,测量材料燃烧所需的最低氧浓度,结果应符合需方要求

GB/T18380标准族评定电缆成品在火焰条件下垂直蔓延的情况,GB/T2406-1993标准评定材料在规定试验条件下的性能,明确说明“不能用于评定材料在实际使用条件下着火的危险性”,试验目的、原理及结果判定均不同

a

a其中差异在笔者主持完成的原国家质检总局科研课题“低烟无卤阻燃环保电缆结构、工艺与材料之间的关系”中有较详细的分析研究。

相似的问题还在XLPE绝缘及无卤低烟聚烯烃护套产品上,需注意的部分差异见表4:

表4

指标(项目)

电缆产品标准要求

材料标准对应要求

主要差异

是否有公认技术文件确定差异间的数据关联或替换关系

烟密度(选取无卤低烟阻燃电缆及其所用的无卤低烟聚烯烃护套材料进行对比)

按照GB/T17651.2-19982的要求,测试透光率

GB/T32129规定依据GB/T8323.2-20083,测试比光密度

GB/T17651.2-1998评定电缆成品经过一定量的酒精明火点燃后电缆成品(含绝缘、填充及护套等材料)的累积烟发散量(以透光率计),

GB/T8323.2-2008仅分别考核材料在热辐射源下有引燃火焰和无引燃火焰状态下的光衰加权值(以比光密度计),

试验目的、原理及结果判定均不同。

热延伸

GB/T12706要求按照GB/T2951.21-2008的规定,从成品内层制取0.8mm-2.0mm厚的试样

JB/T10437-2004要求按照GB/T2951.5-1997的规定,整片制取(1.0±0.1)mm厚的试样

成品是外层单面加热交联并从内层制取样样品,厚度0.8mm-2.0mm

材料是整体加热交联,无取样部位规定,厚度(1.0±0.1)mm

绝缘热收缩

按照GB/T2951.13试验,考核试样加热再冷却后的收缩率

未作要求

材料标准未作要求

通过上面对比分析可见,如果简单不加区分的采用符合各自标准的绝缘及护套料来制造各类电线电缆产品,带来的后果将是产品质量不合格或者是成本的上升(基于同样的原因,内护套等材料也是如此)。由此可见,我们电缆企业在材料选用及验收过程中,需要在将材料标准作为采购合同的质量验收标准的基础上,将符合电缆产品标准并有良好的工艺性能作为兜底条款。

误区三、相似产品采用同样的绝缘护套材料及同样的加工工艺,质量不会有显著的差异

经常有企业在收到不合格报告存在疑惑——先前用同样的材料及工艺生产的类似产品都能通过检验,现在怎么通不过?实际上,电线电缆产品针对预期使用条件的不同形成型号规格繁多,即使同一个标准内的产品亦有数十至上百个型号规格,不同型号间存在材料、结构及尺寸上的差异,同型号不同规格间存在结构、尺寸上存在差异,这些差异会使同样材料即便经过同样工艺也会呈现出不同的整体质量特性。以下是几个普遍存在且值得注意的问题:

——低压挤包绝缘的交联。目前,在低压挤包交联绝缘生产上,基本都采用硅烷交联绝缘材料,其实现交联过程的化学反应原理为:交联聚乙烯聚合物通过加温,在硅烷醇缩合催化剂的作用下,遇水发生水解,从而形成网状的氧烷链交联结构。因而在交联方式上是通过温水或蒸汽的蒸煮实现挤包绝缘的交联,此过程的主要工艺参数为蒸煮的温度和时间,各厂的交联工艺文件基本都统一采用将温度控制在90℃至95℃、交联时间6小时左右。实际上,不同规格的电缆有着不同的绝缘厚度,随着厚度的增加,绝缘内外层达到工艺温度及接触水分子完成水解进而形成网状结构的时间存在一定差异;即便同一绝缘厚度的线芯,随着装盘层数的增加,卷绕在电缆盘上的表层线芯和中间层线芯达到工艺温度及接触水分子完成水解进而形成网状结构的时间也存在一定差异。此外,考虑到不同供应商生产交联料在配方、基料、催化剂、抗氧剂等方面的差异,其产品也有着不同的工艺特性、需要不同的工艺参数。因此,一刀切的采用一个工艺参数,容易出现:由于上述原因中间层蒸煮不足造成交联不充分,导致热延伸试验不合格,或者过度蒸煮确保交联充分,但增加了能耗、降低了生产效率,使得生产成本上升。解决办法为将该过程作为特殊过程,做好过程参数确认,列出不同供应商的材料在不同绝缘厚度和装盘层数的工艺参数,实现精细化生产、保证产品质量。

——电缆的阻燃与抑烟。当前电线电缆燃烧性能均按照GB/T18380标准